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Abstract – Dynamic simulators have recently become common devices in the automotive industry, their aim 
possibly being virtual prototyping, training, medical studies, R&D. The critical point is the capability of providing 
the final user with a driving feeling as realistic as possible, in order to exploit the device at best. This is the task 
of the Motion Cueing Algorithm (MCA), which calculates the correct motion displacements to be provided to the 
motion controller, while assuring not to exceed the working operational area. Model Predictive Control has been 
successfully applied to MCA design, being well suited for the particular problem, where optimal performance is 
required while respecting physical boundaries. Nevertheless, the predictive aspect of the algorithm has been 
developed only in a trivial way, due to the evident difficulties in predicting the behaviour of the whole system, 
since it includes a human in the loop, and hard real-time requirements. In this paper, we present a solution to 
apply real-time, realistic prediction to a MCA based on MPC, where the variability introduced by the driver is 
taken into account. In particular, the proposed technique can effectively handle possible unexpected driver’s 
behaviour and can be adapted to the driving ability of the specific user. 
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Introduction 
The automotive industry is one the fields that is 
most impacted by continuous technological 
innovation. In the research and development 
process, test and validation are crucial phases, in 
particular with automotive applications where the 
presence of a human driver in the loop has to be 
taken very carefully into account. Testing on 
prototypes is possible but in general not convenient 
nor desirable, because of their high cost and the 
risks the driver would be subject to. These tasks are 
now often performed using Driving simulators, and 
dynamic platforms (where the device itself is able to 
move within a defined space) are seen with 
increasing interest in the automotive world. Other 
than the explained R&D purposes, these platforms 
come in useful for a variety of other applications, 
such as physical tests and rehabilitation for 
injured drivers and elderly people, or training for 
racing drivers. It is clear that the effectiveness of 
this particular class of devices is directly related to 
the quality of the motion sensations the driver 
would have during the use, so that the point is 
not to reproduce 1:1 the vehicle behaviour, but 

rather to provide in the best possible way the 
driving feelings that the user would perceive, 
and in some case to reproduce the driver’s 
reaction. The procedure responsible for this task 
goes under the name of Motion Cueing Algorithm 
(MCA). The platform displacements should always 
be kept within the operative working area, as well 
as each one of the actuators, in order to prevent 
unnatural movements or damage to the device and 
the user itself. This particular aspect is known as 
Washout Action. 
During the years different approaches have been 
applied to the design of MCAs, mainly based on 
high-pass and low-pass filtering the signals from 
the computational engine to define which 
information is more relevant to reproduce the 
driver feelings. This approach has many 
limitations, as examined in [Bas11], [Rey00], 
mostly due to the lack of information about the 
process inside the controller, and the consequent 
difficulties in rendering the demands of the driver. 
Moreover, the constraints cannot be directly taken 
into account, so that only conservative approaches 
can be used to perform the Washout Action 
[Beg12]. 
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Model Predictive Control is instead characterized by 
many of the features that are useful to the 
specific problem, and has been used in the last 
years to design MCAs [Dag09], [Aug09]. In 
particular, in [Bas11], [Beg12] we proposed an 
MPC based MCA that has been implemented on a 
real device. The critical aspects that improve the 
quality of the MC are, among others 
• model-based approach: the procedure 

integrates a model of the human perceptual 
system, so the produced signals are reliable in 
terms of motion sensation. Moreover, if a 
model of the platform is available it can be 
integrated in a natural way; 

• constrained procedure: MPC takes into 
account the presence of constraints, so 
limitations on actuators, working area, 
thresholds and similar can be explicitly set; 

• optimal-control technique: the goal is the 
minimization of a weighted cost function, so by 
setting it in  the proper way one  can  reach  the  
desired  performance. In particular, by 
manipulating the weights, different behaviours 
can be achieved, according to the needs of 
the user (tuning phase). 

The result is a flexible control strategy that is very 
effective in terms of motion reproduction, working 
area exploitation, and safety management while 
preserving the real-time requirement to work on 
real devices [Beg12]. In that first implementation, 
the prediction step has been handled in a trivial way, 
common in industrial MPC application when a 
reliable reference is not assured: The prediction 
window is limited in size and the signals are kept 
constant. 
It is clear that having information about the future 
trajectories of the system could increase the overall 
performance, in particular in terms of improving the 
working space management with immediate benefit 
for motion reproduction. As an example, if the 
algorithm is given the information that a braking will 
occur, it will move the platform to gain as much 
linear displacement as possible, so that the specific 
action is reproduced with a greater amplitude. Tilt 
coordination (namely, using slow rotations to exploit 
gravity to provide low-frequency, “false” linear 
accelerations [Beg12]) can also be significantly 
improved by a smart management of the future 
reference. However, the use of non-trivial 
references requires a wider prediction window, 
hence an increase in the size of the optimization 
problem and the computational burden as well, thus 
making the fulfillment of the real-time constraint 
more complicated. Moreover, the derivation of 
reliable references is by itself a challenging task: 
even in the (common) case of driving on a closed 
track, repeatability of the driver actions is an issue. 
Only the most skilled drivers have repeatable 
enough driving behaviour to ensure that a single 

telemetry can be taken as a valid reference signal, 
while a less experienced or a non professional 
driver is likely to vary the driving behaviour 
significantly between subsequent laps. In [Beg13] 
we proposed solutions for both issues. To ease the 
computational complexity a move-blocking 
technique [Lon11] has been applied, where the 
calculation of a smaller, sub-optimal control 
sequence is computed at each time step, by 
dividing the control window in segments each one 
with constant control signal. The second problem 
has been addressed by considering a professional 
driver, hence with a high reliability in terms of 
repeatability, and using a benchmark trajectory with 
small real-time modifications to adapt to the actual 
driving behaviour. 
In the present work, we aim to extend the prediction 
capabilities of the algorithm, by considering more 
generic users, hence with possibility of handling 
large difference in trajectories (positions, velocities, 
accelerations) between two consecutive laps. One 
of the key features of the proposed approach is the 
capability of switching in real-time from the use of 
time-varying prediction to a more conservative 
approach with constant references on a small 
window. This is required to obtain an algorithm that 
can be implemented on a real device for a non-
racing context: the actual behaviour is compared to 
the current tracking signals, and if the error is too 
large, the prediction strategy is switched to a 
conservative one, very close to the non-time 
varying, small prediction window case. The 
switching has to be performed by respecting some 
requirements associated with the use in real-time of 
the optimisation algorithm [Fer14], such as avoiding 
a full re-initialization of the quadratic programming 
problem and the consequent real-time constraint 
violation. To this aim, some parameters have to be 
kept constant, such as the length of the prediction 
window and the weights of the cost function. 

The simulator 
The proposed algorithm has been tested on a 
specific device, Driver in Motion (DiM) by VI-Grade 
& Saginomiya (www.driverinmotion.com). This new 
concept platform privileges the DOFs of interest for 
automotive purposes, i.e. longitudinal and lateral 
displacements and yaw rotations. The mechanical 
structure (Fig. 1) consists of a hexapodal structure 
mounted on a tripod frame sliding on special 
air/mag pads on an extremely even and stiff steel 
surface. The system allows for satisfactory results 
in physical simulation with a relatively small size 
assembly.  Great part of longitudinal, lateral, and 
yaw movements are performed by the tripod, while 
the hexapod is used for pitch, roll and vertical ones, 
together with small longitudinal, lateral, and yaw 
movements. Such redundancy increases the overall 
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bandwidth and motion envelope, while maintaining 
compact dimensions.  
The simulated vehicle dynamics physical engine is 
considered the state-of-the-art in the field and 
provides a highly reliable representation of the real 
vehicle behaviour. The screen covers over 200deg 
angle and the projected image moves in proper 
coordination with the platform to guarantee full 
immersion of the driver in the virtual environment.   
Force feedback on the steering wheel and the 
braking system improves the driver's feeling of the 
vehicle behaviour. Tab. 1 highlights the platform 
dynamic performance and operational space.  
The MC strategy has to provide the displacement 
references to the control system of the platform, 
which is assumed to be able to perfectly track the 
signals with a fixed time delay.  

    
Figure 1. Driver in Motion simulator 

 
Table 1. Platform Tripod (t) and Hexapod (h) performance 

Move blocking strategy 
The many advantages of applying MPC to the 
Motion Cueing problem have been thoroughly 
analyzed, and insights and results can be found in 
our previous works [Bas11], [Beg12]. In brief, the 
idea is to use a linear mathematical model of the 
human perceptive (vestibular) system together with 
a simple model for the mechanics in order to derive 
reliable perception signals hence improving the 
tracking action. Moreover, constraints are specified 
in regards to both perceptive aspects (e.g. 
perception thresholds [Hou05], motion inversion 

limitation) and the platform structure (e.g. limits on 
the working area and actuators capabilities). 
One of the key aspect of MPC applied to Motion 
Cueing problem is the definition of the cost function 
J(t) in the optimisation step. In the situation at hand, 
a quadratic cost function is chosen as follows 

𝐽 𝑡 =    𝛿 𝑗 𝑦 𝑡 + 𝑗 𝑡 − 𝑟 𝑡 + 𝑗
!
+

!!

!!!

𝜆 𝑗 𝑢(𝑡 + 𝑗)!
!!!!

!!!

+ 𝛾 𝑗 𝛥𝑢(𝑡 + 𝑗)!
!!!!

!!!

 

            (1) 

where y(t+j | t) is the predicted trajectory, r(t+j) is the 
future reference (the perceived accelerations and 
rotational velocities) over the prediction window of 
size NP, u(t+j) and ∆u(t+j) are the future inputs (the 
vehicle accelerations and rotations) and input 
difference, respectively, over a control window of 
size NC; δ, λ, γ  are weight values.  
The improvement given by using a non-constant 
reference signal becomes relevant if the prediction 
window length is large enough to allow for a 
significantly better exploitation of working area. 
Therefore, a larger number of samples NP has to be 
considered and consequently a larger optimal input 
sequence has to be found, so that the size of the 
optimization problem is increased, directly affecting 
the resolution time which typically grows 
exponentially in the instance size [Boy04]. Hence, 
on the one hand the prediction window length has 
to be as large as possible for the non-constant 
predictive action to be effective, on the other hand, 
the number of samples can not be too large to 
preserve real-time capabilities. To overcome this 
limitation, a move-blocking strategy is considered. 
This is a common solution in the literature [Lon11], 
[Cag04], based on the idea of limiting the size of the 
optimization problem by reducing the number of 
free inputs, obtained via the use of different 
sampling frequencies that decrease while moving 
away from the initial condition and keeping the 
values between two steps constant. In particular, by 
applying this strategy on ∆u(t), the corresponding 
input u(t) will have a first-order interpolation. From a 
mathematical point of view, the NC variables of the 
original problem are reduced to N’C < NC possible 
different values via a Kronecker product 

Δ𝑈 𝑡 ! = 𝑇   𝐼! Δ𝑈 𝑡 ,                                                   (2) 
with ∆U(t)’ = [∆u(t)’,…, ∆u(t+N’C-1)]T and analogously 
for ∆U(t). T is a matrix of ones and zeros only, with 
each row containing exactly one non-zero element 
disposed in “stairs” structure [Cag04]: e.g., to 
reduce a problem from NC = 5 to N’C = 3 with the last 
three samples equal among each other, T is given 
by 

DOF  Position Velocity  Acceleration 
xt  ±0.8 m  1.7 m/s  12 m/s2  
yt  ±0.75 m 1.5 m/s  10 m/s2  

Yaw, ϕt  ±25 deg 165 deg/s 900 deg/s2  
xh  ±0.28 m 2 m/s  25 m/s2  
yh  ±0.25 m 1.7 m/s  25 m/s2  
zh  ±0.22 m 1.6 m/s  35 m/s2  

Roll, ψh ±20 deg 135 deg/s 2500 deg/s2  
Pitch, θh ±20 deg 130 deg/s 2000 deg/s2  
Yaw, ϕh ±20 deg 135 deg/s 3000 deg/s2  
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𝑇 =

1 0 0
0 1 0
0 0 1
0 0 1
0 0 1

                                                                                        (3) 

The problem is modified by substituting Eq. 2 in Eq. 
1, and adding Eq. 2 as a constraint. 
The use of move-blocking may have an important 
draw- back in terms of problem feasibility, namely, 
the calculated optimal sequence is not optimal for 
the original problem, possibly leading to 
unfeasibility in the subsequent optimization steps. 
In particular, when using a hot-start based solver, 
the information derived from the previously 
computed solution is exploited to solve the new 
iteration. Given that the sequence in Eq. 2 is an 
approximation of the exact solution, the risk of 
unfeasibility increases. The regulation of the 
constraints and weights of the cost function, that is 
the tuning of the algorithm, has to be carried out 
very carefully in order to preserve the feasibility of 
the solution. 

Prediction Strategy  
To be effective, prediction-based control strategies 
require the availability of reliable reference signals, 
that may be hard to obtain when the system 
involves fast dynamics and signals variability is 
high. In the current application, moreover, the 
presence of a human in the loop obviously 
introduces potentially unpredictable behaviours. 
When driving on closed circuits or more generally 
on pre-defined tracks (as is often the case in 
vehicle development or driver training applications) 
the presence of repetitive patterns helps in defining 
suitable reference trajectories. In such cases, 
professional or highly skilled drivers operate the 
platform so that the difference between two 
consecutive laps is small enough that a pre-defined 
benchmark signal can be used as a reliable 
reference for prediction [Beg13]. 
If this is not the case, it is necessary to devise 
appropriate strategies for making effective use of 
suitable prediction signals. In the present work, a 
generic procedure for managing the tracking signal 
is introduced, with the specific task of providing an 
algorithm that is reliable and efficient in terms of 
safety, motion envelope exploitation, tracking 
quality, and computational burden. In particular, the 
use of prediction in a MCA should naturally 
introduce prepositioning strategies in the algorithm, 
i.e. if it is known beforehand what the next 
maneuver will be, it is possible to anticipate the next 
movement of the vehicle and move the platform to a 
point that will increase the workspace in the 
required direction. As an example, if it is know that 
within the next n seconds a strong braking will 
occur, the device could be slowly moved forward 
combining the movement with tilt coordination to 

assure that at the time of braking, all the available 
linear space would be used. Tilt coordination itself 
could be more effectively used by exploiting 
anticipated knowledge of the future actions. 

Future reference generation and 
switching strategy 
It is trivial to understand that when the actual 
behaviour is different from the expected one, e.g. 
due to delays or different magnitude of the signals, 
the output of the MPC is not acceptable, and a 
more conservative, Non-Look-Ahead (NLA) strategy 
with constant and small-windowed prediction 
is to be preferred. This situation can be worsened 
by the possible loss of optimality introduced by 
move blocking. Starting from this concept, we use 
as tracking signal r(t) defined as 

𝑟 𝑡 =
𝑟,                                                        𝑡 ≤ 𝑇!"
𝑘!" ∙ 𝑟! 𝑡                         𝑡 > 𝑇!"

                                            (4) 

where 𝑟 is a constant reference vector, 
correspondent to the current outputs of the system, 
rb(t) is the future benchmark and kLA (LA stands for  
Look-Ahead)  is  a  coefficient.  In this way, a 
natural balance arises between what the driver is 
doing and what it is expected from them. The cost 
function is modified in the appropriate way by acting 
on the weights of the tracking errors, that have to 
be regulated differently depending on which part of 
the reference they are influencing. A crucial role is 
clearly played by the value of the parameter TLA. 
If, however, the driver is acting in a very different 
way with respect to the expected behaviour, it is 
preferable not to use prediction at all, so that a 
switching strategy between the time-varying and 
constant reference cases has to be included in the 
algorithm. In this regard, it is important to observe 
that a linear MPC with a quadratic cost function is 
typically reformulated as a constrained Quadratic 
Programming problem (QP) [Wan09], [Bas11] to be 
solved by dedicated solvers. In [Bas11], [Beg12] it 
is proposed to use qpOASES, an efficient and open-
source real-time solver implemented in C++ [Fer14] 
and based on an on-line, hot start Active-Set 
strategy. Given the increased complexity and 
computational burden needed to solve the LA 
strategy, this kind of resolution approach is even 
more crucial to reach real-time performance. 
qpOASES solves constrained QP problems in 
standard form 

min! 𝜉!𝐻𝜉 + 𝜉!𝑔                                                                       (5) 
s.t.          𝑏!" ≤ 𝐴𝜉 ≤ 𝑏!"                                                          (6) 

and the hot-start strategy requires that only 
parameter g can be modified on-line in order to 
minimize the computational time. All the other 
parameters in Eq. 5, which values depend on the 
weights of the original cost function (Eq. 1), are 
“hardcoded” so the trivial solution of switching from 
the LA strategy to the NLA one is not “real-time” 
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feasible, asking for a full restart of the problem. The 
only variables that can be manipulated are the ones 
fed to the algorithm, in particular the reference 
signals themselves. 
The switching strategy is then implemented as 
follows. The coefficient kLA is set to zero, so that 
only the constant component of the reference, 𝑟 is  
“active”. A number of tests are then performed to 
find the set of weight values that drive the system 
performance as close as possible to the NLA case. 
Note that the two considered procedures are 
intrinsically different, i.e. it is impossible to find an 
equivalent tuning configuration. In the application at 
hand, we consider as “standard” the case detailed 
in [Beg12] where the prediction is constant for 0.3s, 
and try to find the best match by acting at the same 
time on the weights of the cost function and the 
value of TLA. The results in Fig. 2 illustrate the 
analysis conducted along the longitudinal/pitch DOF 
(other DOFs are omitted due to the lack of space), 
where the LA case is tuned to be as close as 
possible to the standard one by varying TLA, the 
weight values on the prediction window. 

 
Figure 2. Analysis of position errors with different 

configuration of parameters in the LA case w.r.t. the 
standard one 

The aim is to maximize the value of the weight on 
the perceived acceleration 𝑤! (to increase the 
performance when kLA > 0), while minimizing the 2-
norm of the position error. More than 500 iterations 
have been performed to choose the ideal setup (the 
red circle in Fig. 2). The resulting setup is called 
equivalent tuning. 
In Fig. 3 the comparison between the algorithm 
behaviour in the standard and LA case is depicted, 
showing that the performance of the system is very 
similar in both cases.

 
(a) Longitudinal acceleration 

 
(b) Longitudinal position 

Figure 3. Motion reproduction and platform exploitation with 
equivalent tuning configuration of parameters 

The reported analysis indicates that there exist 
some weight combinations that allow the system to 
perform in a conservative way, hence it is possible, 
if required by critical situations, to switch to a safer 
configuration while guaranteeing the continuity of 
the procedure, that is, without stopping the 
algorithm letting the driver be always in full control 
while carrying on the dynamic simulation. The only 
parameter to act on for the switch is the gain of the 
LA part of the reference, hence the transition 
between the two strategies is immediate and 
simple. Moreover, acting on different values of kLA 
can modify the reference to be easy adapted to 
each driver, as will be illustrated in the next 
paragraph. 

Reference signal management 
The reference r(t) has to be provided, in the specific 
application, as indicated in Eq. 4. It is important to 
evaluate how the MCA performs when the actual 
driver behaviour will determine discrepancies with 
respect to the benchmark. In particular, the critical 
case are the delays (possibly positive or negative) 
that can affect a specific maneuver. For instance, 
considering a braking or a turn, a non-expert 
driver could anticipate or defer the action 
introducing misalignments that could result in 
unsatisfactory performances. As a first 
compensation, an online delay management is 
introduced, which compares the current behaviour 
with the benchmark signal and, by evaluating the 
2-norm error, derives the most appropriate time-
shift to be applied. Nevertheless, the presence of a 
safety procedure is still required. The proposed 
switching-strategy assures a recovery action by 
nullifying the time-varying part of r(t). Similarly, it is 
expected that manipulating the scale factor kLA will 
have an effect on the overall performance, 
providing somehow an adaptation to different levels 
of precision in driving. This aspect will be analysed 
and discussed in the following Section. 
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To identify different sets of parameters that 
influence the behaviour of the system when 
prediction is active, depending on the skill of the 
user, a set of simulations have been performed. As 
a performance index, the variation of the input gain 
G on vehicle accelerations with respect to its 
value G0 in the standard case has been chosen. 
To motivate such choice, let us consider the 
standard case with constant prediction on a small 
time window. The original signal coming from the 
simulated vehicle must be necessarily scaled 
before being fed to the algorithm, to match the 
platform capabilities. If the algorithm cannot 
provide a reliable prepositioning strategy, i.e. a 
reliable prediction, the value of G has to be 
reduced until it is granted that the platform will not 
reach its limits, to assure continuity of motion and 
prevent inconsistent behaviours. The more 
efficient the predictive action is, the less the 
input signals have to be scaled down, hence 
improving the device working space exploitation. 
Therefore, to assess the effect of variation of kLA 
in the time-varying prediction strategy, we evaluate 
the maximum value that G can take with respect 
to its optimal value G0 in the standard case 
described in [Beg12], expressed as percentage: 

𝐺% =
𝐺 − 𝐺!
𝐺!

∙ 100. 

Moreover, we are interested in assessing the 
effects of errors introduced by anticipations or 
delays of the current action with respect to the 
benchmark trajectory. So the analysis are 
conducted by considering different values of the 
time-translation ∆p. 

 
 

Figure 4. Benchmark acceleration signal vs. real one  

We report only results regarding the coupled 
longitudinal/pitch DOF, although the analysis has 
been carried out for all the DOFs, since it is a 
particularly significant one, being associated with 
the management of braking and accelerating 
maneuvers. The benchmark signal is similar to a 
real braking one and it is shown in Fig. 4. The 
parameters of interest vary in given intervals, i.e. kLA 
∈ [0, 1] and ∆p ∈ [−1, 1] seconds. The chosen 
prediction (and control) window is 8s, since it has 
been tested to be the maximum prediction horizon 

that maintains the feasibility of the required real-
time constraints (100 Hz control frequency). 
Accordingly, the move blocking strategy uses a 100 
Hz sampling in the first 0.5s of the prediction/control 
horizon, and 10 Hz for the remaining range.  
Figure 5 shows the variation of G% as a function of 
∆p for different values of kLA. The influence of the 
variation of ∆p on the final result is evident: with kLA  
= 1 and ∆p next to 0, the overall performance is 
noticeably increased by approximately 250%. 

 
Figure 5. Performance analysis of equivalent tuning, 

different values of kLA 

The results also show how the effect of ∆p is not 
symmetric, with a very abrupt degradation in 
performance with kLA = 1 for a delay greater than 
0.3s. The Figure enlightens another crucial aspect. 
If kLA = 0.8 we have a high efficiency of the algorithm 
with greater delays. This indicates the effect of a 
reduced amplitude of the expected behaviour in the 
described framework is a suitable setup for a wider 
set of users, even less skilled, provided that the 
advantage in using prediction is reduced. Fig. 6 
shows how different set of tuning parameters can 
be classified depending on driver’s skills.  

 
Figure 6. User classification for equivalent tuning: green 

area corresponds to more expert driver 

In this sense, the indicated procedure can adapt in 
an easy way to the user that will perform the 
simulation and its capabilities. More precisely we 
can say that the advantage in using prediction is an 
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increment of 165% compared to the standard 
approach if the driver is capable to guarantee 
repeatability within -0.4 and +0.3 seconds.

 
Figure 7. Performance analysis of optimal tuning, different 

values of kLA. Comparison with equivalent tuning is reported 

As a further remark, it is interesting to evaluate the 
potential of the algorithm when no switching-
strategy is adopted, hence with a tuning conceived 
to achieve the best possible performance with 
active LA. This is to understand the full potential of 
applying a reliable prediction to the specific 
problem. Fig. 7 shows how the quality of motion 
reproduction would dramatically increase with a full 
exploitation of prediction: the optimal tuning 
provides an increase in performance that reaches 
the 700% compared to the standard case. The 
equivalent tuning is reported for comparison with kLA 
= 1. Note that, as expected, this setup is more 
susceptible to driver errors: the gain is maximum 
only for ∆p = 0 and decreases with non-null values 
more rapidly than in the previous case. Similarly to 
the equivalent tuning case, different classes can be 
defined from this analysis for the kLA value, 
depending on the skills of the user (Fig. 8). These 
results suggest that, accepting the risk of an abrupt 
stop of the motion when a reliable driver’s behavior 
is not available, the performance can be increased 
considerably. 

 
Figure 8. User classification for optimal tuning: green area 
corresponds to a decrease in driver’s ability from the more 

to the less expert 

This optimal configuration can be considered a 
development of the classical prepositioning, given 
that it adapts in a natural way to slight modifications 
on driver’s action. 
Finally, Fig. 9 illustrates the effect of prediction in 
terms of motion reproduction and working area 
usage by comparing the equivalent tuning 
behaviour with kLA = 0 and kLA = 1. In the latter case, 
the acceleration signal is tracked almost perfectly 
since the algorithm exploits the information known 
in advance to slowly move the platform in the 
direction opposite to the one of the braking. It is 
important to remark that such a big advantage in 
using prediction can be explained by a combination 
of factors. Time-varying prediction, besides 
providing prepositioning, makes the tilt coordination 
more effective (in Fig. 8(d) the pitch angle 
corresponding to the tilt-coordination action is 
reported in the two cases). Moreover a proper 
velocity is reached synchronously and consistently 
with the expected event, allowing a greater 
acceleration within the same working area. This is 
obtained while maintaining the false cues under the 
perception threshold: Fig. 8(c) shows the pitch 
velocity corresponding to the tilt action, which is 
maintained well below the perception threshold of 
0.05 rad/s [Hou05]. 
From a computational point of view, the simulations 
have been performed within MatLab environment, 
on a common PC with i3 processor, 4 GB RAM and 
Microsoft Windows as OS. Considering a telemetry 
of 80s, we have that with a prediction window of 8s 
and a control frequency of 100 Hz, the time 
required for a complete run is of 1743.8s, i.e. 
approximately 21.8× the desired real-time 
constraint. By using the described move-blocking, 
i.e. 0.5s at 100 Hz and the remains 7.5s at 10 Hz 
frequency, the whole computation is reduced to 
41.18s, that is 0.005s ca. for each step, safely 
below the required maximum time of 0.01s per step. 

Conclusions 
In this work an evolution of a time-varying prediction 
strategy for a linear MPC-based MCA is presented. 
The prediction is designed so as to provide a 
compromise solution between the current driver 
behaviour and a benchmark one. A thorough 
analysis has been conducted to study the effect of 
the key tuning parameters on the algorithm 
performance while granting a smooth transition 
between the Look-Ahead and Non-Look-Ahead 
case. The solution has real-time capabilities and 
does not require stopping the simulation and re-
instantiating the procedure. Finally, the increase in 
performance has been tested in terms of working 
area exploitation and motion reproduction on a 
representative case for the coupled 
longitudinal/pitch DOFs. An interesting remark is 
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that the algorithm can be adapted to the driver 
skills. 
Future work will focus on improving the transition 
between the LA and the safer case exploiting the 
recognition of predetermined events, on improving 
the management of errors in repeatability (e.g. 
considering scaling of dilatation of the signals), and 
introducing a stochastic approach that could take 
care of the errors both in the references and the 
model. 
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Figure 9. Improvement in device exploitation using prediction (kLA = 1) vs. The conservative case (kLA = 0) 


